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Abstract. One of the most commonly used tools in hydrology, empirical flow duration curves 

(FDCs) characterize the frequency with which streamflows are equaled or exceeded. Finding a 

suitable probability distribution to approximate a FDC enables regionalization and prediction 

of FDCs in basins that lack streamflow measurements. FDCs constructed from daily 10 

streamflow observations can be computed as the period-of-record FDC (POR-FDC) to 

represent long-term streamflow conditions or as the median annual FDC (MA-FDC) to 

represent streamflows in a typical year. The goal of this study is to identify suitable probability 

distributions for both POR-FDCs and MA-FDCs of daily streamflow for unregulated and 

perennial streams. Comparisons of modeled and empirical FDCs at over 400 unregulated 15 

stream gages across the conterminous United States reveal that both the four-parameter kappa 

(KAP) and three-parameter generalized Pareto (GPA3) distributions can provide reasonable 

approximations to MA-FDCs; however, even four and five-parameter distributions are unable 

to capture the complexity of POR-FDC behavior, often with flows ranging over five or more 

orders of magnitude. Regional regression models developed for the mid-Atlantic and Missouri 20 

regions as case studies present a simple and practical method to predict MA-FDCs at ungaged 

sites, which can be accurately predicted more consistently compared to POR-FDCs. 
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1 Introduction 

One of the most commonly used tools in hydrology, flow duration curves (FDCs) 

illustrate the frequency with which streamflows are equaled or exceeded. Applications of FDCs 

include allocation of water, wastewater management, hydro-power assessments, sediment 

transport, protection of ecosystem health (Castellarin et al., 2013; Vogel and Fennessey, 1995) 5 

and the generation of time series of daily streamflows at ungaged sites (Archfield and Vogel, 

2010). Traditionally, FDCs have been constructed for the full period of observed record (POR-

FDCs) by ranking flows from all recorded years and plotting them against an estimated 

empirical exceedance probability. POR-FDCs are particularly useful for representing the long-

term or steady-state hydrologic regime at a site, and for estimation of time-series of daily 10 

streamflows at ungaged sites (Archfield and Vogel, 2010; Fennessey, 1994; Hughes and 

Smakhtin, 1996).  

In contrast to a POR-FDC, mean and median annual FDCs represent the frequency of 

flows in a typical year and are less dependent upon the specific period of record (LeBoutillier 

and Waylen, 1993; Vogel and Fennessey, 1994). Mean or median annual FDCs are derived 15 

from a series of annual FDCs (AFDCs), a ranking of all flows within a single year. The full set 

of AFDCs can also be used for the construction of confidence intervals (Castellarin et al., 2007; 

Serinaldi, 2011; Vogel and Fennessey, 1994). For representing the frequency and magnitude 

of streamflows in a typical year, median annual FDCs (MA-FDCs) are generally preferred to 

mean annual FDCs because they are less influenced by abnormally dry or wet years (Vogel 20 

and Fennessey, 1994).  

MA-FDCs are increasingly used as an alternative to POR-FDCs when flows in a typical 

year are of primary interest. For example, MA-FDCs have recently been used to predict 

hydropower production (Mohor et al., 2015; Müller et al., 2014), evaluate regional similarity 

between streams under different flow conditions (Patil and Stieglitz, 2011), and characterize 25 
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baseflow variability (Hamel et al., 2015). MA-FDCs are also used to compare streamflow 

regimes in different catchments (Hrachowitz et al., 2009) or assess before and after watershed 

land-use changes (Kinoshita and Hogue, 2014). Commonly used in ecological assessment of 

rivers, MA-FDCs can help quantify fish passage delays (Lang et al., 2004). Median seasonal 

FDCs have been used to evaluate impacts on ecological flow regimes and to define the concepts 5 

of ecodeficit, ecosurplus, and ecochange (Gao et al., 2009; Lin et al., 2014; Vogel et al., 2007). 

1.1 Prediction of FDCs in ungaged basins 

Broad regions of the world have little or even no records of streamflows, making 

prediction of flows in ungaged basins a major challenge (Sivapalan et al., 2003). Many studies 

have developed methods to predict POR-FDCs at ungaged sites. For an extensive review of 10 

these methods, refer to Chapter 7 in “Runoff prediction in ungaged basins” (Castellarin et al., 

2013) and to Archfield and Vogel (2010). Process-based models are an increasingly popular 

method of deriving and predicting FDCs at ungaged basins because they offer the ability to 

relate watershed physical characteristics to streamflow regimes. While promising for locations 

without streamflow data, process-based FDC models require numerous assumptions regarding 15 

runoff and climate mechanisms (Botter et al., 2008; Yokoo and Sivapalan, 2011). 

The most commonly used methods to estimate POR-FDCs in ungaged basins are 

statistically based, such as regression and index flow methods. Castellarin et al. (2004) 

introduced a promising index-flow model to predict FDCs at ungaged sites which links AFDCs 

to the POR-FDC. Many statistical methods, including index flow approaches, depend upon the 20 

identification of a suitable probability distribution to fit to the POR-FDC. This remains a 

considerable challenge because daily streamflows often range over many orders of magnitude 

thus exhibiting extraordinary positive skewness. Nevertheless, if an appropriate probability 

distribution can be identified, regional regression models of the distribution parameters can be 

used to estimate daily flows at ungaged sites. In identifying a suitable probability distribution, 25 
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the need for sufficient parameters to describe the complex distribution of daily streamflows 

must be balanced with the challenge that additional parameters hinder parameter identifiability, 

estimation and interpretation (Castellarin et al., 2007). Given the difficulty of selecting a single 

distribution to approximate the probability distribution of daily streamflows, some studies have 

focused on a portion of the FDC, such as flows below the median (Fennessey and Vogel, 1990) 5 

or above the mean (Segura et al., 2013) or have considered separate models for wet and dry 

seasons (Bowers et al., 2012).  

1.2 Probability distributions to approximate FDCs 

Vogel and Fennessey (1993) and Fennessey (1994) concluded that a 3-parameter 

generalized Pareto (GPA3) distribution provides a suitable approximation to the probability 10 

distribution of POR-FDCs in Massachusetts and the northeastern U.S. respectively, based upon 

L-moment diagrams. When additional goodness-of-fit metrics were considered, the GPA3 was 

rejected as a suitable probability distribution for POR-FDCs in Italy (Castellarin et al., 2004). 

Multiple authors have noted that a complex distribution with at least four parameters is needed 

to approximate the probability distribution of daily streamflows (Archfield, 2009; Castellarin 15 

et al., 2004; LeBoutillier and Waylen, 1993). Castellarin et al. (2007) selected the 4-parameter 

Kappa distribution (KAP) to approximate the distribution of daily streamflows for a region in 

Italy. For the northeastern U.S., Archfield (2009) also found KAP, and, to a lesser degree, 

GPA3, to provide a good approximation for POR-FDCs; nevertheless a number of challenges 

were identified in fitting the KAP and GPA3 to the tails of the POR-FDCs. For the lowest 20 

flows, Archfield (2009) found that the application of both the GPA3 and KAP probability 

distributions generated negative streamflows - a physical implausibility - at some sites and at 

other sites led to consistent over-estimation of minimum flows or under-estimation of 

maximum flows due to probability distribution theoretical lower and upper bounds, 

respectively. Even more complex probability distributions than the GPA3 and KAP considered 25 
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by Archfield (2009) were not promising either; for example, the five-parameter Wakeby 

distribution could not be fit at over half the study sites considered. 

A few studies have focused on fitting a probability distribution to FDCs for a typical 

year rather than the whole period of record.  LeBoutillier and Wayland (1993) found a 5-

parameter mixed lognormal distribution to be superior to 2- and 3-parameter lognormal, 5 

Gamma and generalized extreme value distributions for fitting probability distributions to mean 

annual FDCs of four rivers in Canada. Fennessey (1994) is the only study to our knowledge to 

fit a probability distribution to median annual FDCs. For the mid-Atlantic U.S., Fennessey 

investigated a number of 2 and 3-parameter distributions and identified the GPA3 as a suitable 

distribution for both POR- and MA-FDCs. In addition, he developed regional regression 10 

models to relate GPA3 model parameters to measurable basin and climate characteristics and 

then used those models to estimate future impacts of climate change on FDCs. 

In this study, comprehensive goodness-of-fit evaluations are used to assess the ability 

of several probability distributions to approximate the distribution of both POR-FDCs and MA-

FDCs of daily streamflows. The study region includes over 400 gaged, unregulated, perennial 15 

watersheds across the conterminous US. To our knowledge, no study has previously attempted 

to evaluate the GOF of alternative probability distributions to daily FDCs for as large a region 

as the conterminous U.S. The paper is organized as follows. We begin with a description of the 

methods to construct POR- and MA-FDCs, the candidate probability distributions, and an 

introduction to the study region. Next we provide results: L-moment ratio diagrams, 20 

quantitative GOF of probability distributions and example flow duration curves illustrating the 

range of fits. Based on these results, we develop regional models for estimation of FDCs at 

ungaged sites for two case study regions.  Finally, we summarize our findings and provide 

directions for future research.  
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2 Methods and study region 

2.2 POR- FDC and MA-FDC estimation 

A FDC is defined as the complement of the cumulative distribution function: 

1 − F$ q , where	F$(q) 	= 	P Q ≤ q       (1) 

where q represents observed streamflow and F$(q)	is the empirical cumulative distribution 5 

function of observed streamflow. The first step in constructing a POR-FDC is to rank the flows, 

qi, in ascending order as in q(1)…q(365n) where n is the number of years of record. For leap years, 

flows from February 29 are removed to maintain consistent sample sizes across years. Next, 

these flows are plotted against a plotting position, which is an estimate of the exceedance 

probability associated with each ordered observation. The Weibull plotting position is used as 10 

it provides an unbiased estimate of exceedance probability, regardless of the underlying 

probability distribution of the ranked observations (Vogel and Fennessey, 1994): 

P Q > q = 1 −	 3
456789

       (2) 

where i represents the rank. Vogel and Fennessey (1994) review several alternative and more 

complex nonparametric quantile estimators that can be used to construct FDCs; this simple 15 

estimator is selected here given the large sample sizes (365 for each MA-FDC and at least 

365×40 for each POR-FDC). The procedure for constructing an MA-FDC is similar, but rather 

than ranking all of the 365×n flows, flows are ranked within each calendar year resulting in n 

lists of rankings 1-365 for each of the n years. Then the median flow at each ranking is selected. 

Figure 1 illustrates of the differences between the POR-FDC, AFDCs and the MA-FDC at an 20 

example USGS streamflow gage. The majority of the POR- and MA-FDC curves are very 

similar, but differ at the lowest and highest durations because the most extreme streamflows 

on record are always included within POR-FDCs yet those same extreme flows do not impact 

Hydrol. Earth Syst. Sci. Discuss., doi:10.5194/hess-2016-460, 2016
Manuscript under review for journal Hydrol. Earth Syst. Sci.
Published: 22 September 2016
c© Author(s) 2016. CC-BY 3.0 License.



7 
 

the construction of MA-FDCs because the median estimator is insensitive to outliers. See 

Vogel and Fennessey (1994) for a more detailed discussion of this issue. 

2.1 Candidate probability distributions and selection  

We build off of previous work suggesting the KAP and GPA3 distribution as candidate 

probability distributions (Fennessey,1994; Castellarin et al., 2007; Archfield, 2009). The 5 

GPA3, generalized extreme value and generalized logistic distributions are all special cases of 

the KAP distribution and the exponential distribution is a special case of the GPA3 distribution 

(Hosking, 1994, 1997). The quantile function, x(F), the inverse of the cumulative distribution 

function, F(x),  for a GPA3 distribution is given by Hosking and Wallis (1997): 

𝑥 F =
ξ − α log 1 − F x ,												k = 0
	ξ + D

E
	 1 − 1 − F(x) E ,					k ≠ 0

     (3) 10 

where ξ is the location parameter, α is a scale parameter, and k is a shape parameter. 

When k=0, GPA3 simplifies to the exponential distribution. The KAP distribution includes the 

same three parameters as GPA3 plus an additional shape parameter, h. The quantile function 

of the KAP distribution is given by Hosking (1994): 

𝑥 𝐹 = 𝜉 + I
J
	 1 − 9KL(M)N

O

J
    (4)  15 

where log represents the natural log.  

As an initial assessment, L-moment diagrams were used to identify candidate 

probability distributions for both POR- and MA-FDCs. L-moments are linear combinations of 

probability weighted moments and are known to be more robust to outliers and less biased than 

ordinary product moment ratios (Hosking, 1990). L-moment diagrams provide a visual method 20 

of comparing the GOF of various probability distributions to observed data. Vogel and 

Fennessey (1993) demonstrate that L-moment diagrams are often superior to ordinary moment 

diagrams, particularly for very long records of highly skewed samples of daily streamflows, as 
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is the focus of this study. Even when parent distributions are complex, L-moment diagrams are 

useful in identifying simpler distributions that fit the observed data sufficiently well (Stedinger 

et al., 1993). For a description of the theory of L-moments, see Hosking (1990). To visually 

identify candidate distributions, sample estimates of L-kurtosis and L-skew ratios are compared 

with their theoretical relationships using L-moment diagrams.  5 

2.3 Study region 

Because human activities can have substantial impacts on FDCs (Castellarin et al., 

2013), only gages “unregulated” by humans were included (Falcone, 2011)  in our analysis. 

Unregulated gages in the conterminous US with at least 40 years of daily mean streamflow 

records since 1950 from the USGS Hydro-Climatic Data Network (HCDN-2009) dataset 10 

(USGS, 2009) were selected for inclusion to minimize impacts due to differences in sampling 

variability between sites (Vogel et al., 1998). Some previous studies have focused on fitting a 

probability distribution to daily streamflows at small and/or intermittent streams (Mendicino 

and Senatore, 2013; Pumo et al., 2014). Here, 170 sites having an average daily flow value of 

zero (flows below 0.01 feet3/second) were dropped from analysis because they require more 15 

complex methods to fully capture the distribution of streamflow.  

For the resulting 420 gages, mean daily streamflows were obtained from the USGS 

National Water Information System (U.S. Geological Survey, 2001). Figure 2 shows the 

location of the gages within the US. Record lengths of study sites range from 40-61 years 

between 1950-2010. Drainage areas of the basins associated with each gage vary from 1.5 to 20 

over 14,000 km2. Basin characteristics were obtained from the GAGES-II (Geospatial 

Attributes of Gages for Evaluating Streamflow) dataset (Falcone, 2011), which were available 

for 398 of the 420 sites. These basin characteristics were used to develop regional regression 

equations for two case study regions in the US: the Missouri region (HUC #10) and the mid-

Atlantic region (HUC #02). 25 
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3 Results 

3.1 Initial identification of candidate distributions using L-moment diagrams 

Figure 3 shows curves representing theoretical relationships between L-kurtosis and L-

skew ratios of several three-parameter distributions compared with sample estimates of L-

moment ratios computed from empirical POR- and MA-FDCs at study sites. On these L-5 

moment diagrams, three-parameter distributions are shown as curves, the four-parameter 

Kappa distribution is represented by the area between the curve of the generalized logistic 

(GLO) and the theoretical lower bound for L-kurtosis given L-skewness for all distributions 

(ALL.LB), and the lower bound of the five-parameter Wakeby distribution (WAK.LB) is given 

by a curve. The L-moment diagrams for the POR-FDC (Fig. 3, left) and MA-FDC (Fig. 3, 10 

right) appear to be similar, which is expected given that the points represent L-moment ratios 

for the same 420 US sites.  However, as we show below, there is greater sampling variability 

associated with the estimated L-moment ratios corresponding to the MA-FDCs due to their 

much smaller sample sizes (365) compared with the sample sizes associated with the POR-

FDCs which equal 365×n.   The bulk of the points in both plots in Fig. 3 appear to be 15 

concentrated around the dashed GPA3 line, suggesting that GPA3 is the most promising 3-

parameter distribution, among the probability distributions considered, as expected from the 

literature. Given a sufficiently long record length, we would expect the points in Fig. 3 to fall 

on the GPA3 theoretical curve if distribution of daily streamflows arose from the GPA3 

distribution. The fact that the points fill an area bounded roughly by the GLO curve and the 20 

ALL.LB indicates that the four parameter KAP distribution may also provide a suitable fit to 

both POR-FDCs and MA-FDCs. We additionally investigate the 5-parameter Wakeby 

distribution (WAK). 

The scatter of points around the GPA3 theoretical curve in Fig. 3 could be due to 

sampling variability resulting from limited sample sizes. To assess whether limited record 25 
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length explains the scatter, synthetic daily streamflows sequences were generated from the 

GPA3, KAP and WAK distributions where each sequence had the same record length as the 

site upon which its L-moments are based. These synthetic data were simulated using the 

following steps: (1) compute the sample L-moments for each site from the observed data; (2) 

estimate the distribution parameters associated with the respective probability distribution from 5 

the sample L-moments for GPA3, KAP, or WAK; (3) simulate data of the same record length; 

and (4) compute L-moment ratios from the simulated sample and plot the ratios on an L-

moment diagram. Of the 420 sites, KAP parameters could not be estimated due to sample L-

moment ratios that were inconsistent with the KAP distribution at 36 sites (9%) for POR-FDCs 

and 20 sites (5%) for MA-FDCs. These sites with L-moments inconsistent with KAP tended to 10 

have smaller drainage areas and flows, however there did not appear to be a clear pattern. Only 

158 of the 420 sites (38%) had daily flows which could be fit with WAK using L-moments, a 

result found in another study that had attempted to fit WAK to daily streamflows (Archfield, 

2009). GPA3 parameters were valid at all sites for both FDCs, an advantage of the GPA3 

distribution for this application. 15 

The impact of sampling variability on POR-FDCs is shown in Fig. 4, which illustrates 

L-moment ratios from data simulated by GPA3 (left), KAP (center) and WAK (right) 

probability distributions. Nearly all of the GPA3-simulated POR-FDC L-moment ratios (grey 

crosses) fall on the GPA3 line. If the observed flows arose from a GPA3 process with the large 

sample sizes considered here, we would also expect minimal scatter resulting from sampling 20 

variability around the theoretical GPA3 curve in Fig. 3.  Thus, the scatter in L-moment ratios 

about the GPA3 line in Fig. 3 does not appear to be due to sampling but rather reflects the 

complexity of the true distribution from which the daily streamflows arise. Because the L-

moment ratios corresponding to the observations do exhibit significant scatter around the 

GPA3 curve (Fig. 3), it seems unlikely that those observations arise from a GPA3 process. 25 

Compared to GPA3, simulated L-moment ratios from KAP (Fig. 4, center) appear more 
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consistent with L-moment ratios estimated from empirical POR-FDCs (Fig. 3). At the 158 sites 

for which WAK parameters could be fit, L-moment ratios simulated from WAK (Fig. 4, right) 

appear less consistent with empirical L-moment ratios (Fig. 3) compared to ratios simulated 

from KAP. We conclude from these initial evaluations that the KAP probability distribution 

appears to provide the best fit among the probability distributions considered. 5 

Simulation of synthetic samples that mimic empirical MA-FDCs poses a considerable 

challenge.  One could generate each AFDC as a subsample of length 365 from an assumed 

POR-FDC based on the theory outlined by Castellarin et al. (Castellarin et al., 2007) and 

Serinaldi (2011) and then compute the MA-FDC of those resulting synthetic AFDCs.   

However, arbitrarily dividing a simulated POR-FDC into samples of 365 would not be 10 

appropriate because it would ignore the important serial stochastic structure of daily flows, 

including such issues as autocorrelation and seasonality. To correctly simulate AFDCs from a 

POR-FDC which, in turn, could be used to estimate an MA-FDC, a more complete 

understanding of the stochastic structure of such daily flows is needed.  To employ the index-

flow model of FDCs proposed by Castellarin et al. (2004) and later extended by Serinaldi 15 

(2011) requires assumptions concerning the probability distribution of both the POR-FDC as 

well as the series of annual streamflows (AF) at each site needed to implement such an index-

flow FDC analysis. We show in Appendix A that selection of a suitable probability distribution 

to approximate both the standardized POR-FDC and the AFs may be even more challenging 

than selection of a suitable probability distribution to approximate the POR-FDC.  Given the 20 

theoretical advantages associated with the index flow method of FDCs, we recommend that 

future attention be given to these approaches introduced by Castellarin et al. (2004) and 

Serinaldi (2011). However, in this study, we seek a single suitable probability distribution to 

approximate the POR-FDC and the MA-FDC for practical applications, thus we do not give 

further consideration to the index-flow FDC method.   25 
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3.2 Overall goodness of fit evaluations of various probability distributions to daily 

streamflow series 

Although L-moment diagrams are useful for providing a rapid and approximate overview 

of the goodness-of-fit (GOF) of promising probability distributions for observed processes, 

they are only one tool to evaluate the distributional properties of data.  Perhaps the two most 5 

commonly-used tools to evaluate the suitability of a model to reproduce observations in 

hydrology are the standardized mean square error commonly referred to as Nash-Sutcliffe 

Efficiency (NSE) and percent bias. The most common estimator of NSE at each site is: 

𝑁𝑆𝐸 = 1 − 	 (STKU
TVW ST

XYZ[)\

(STKSTU
TVW )\

		      (5)	

where Qx represents observed flow at quantile x 𝑄M
^_`a  predicted flow at quantile x, 𝑄M =10 

ST
b

b
Mc9   the mean value of the observed flows, and X the total number of daily flows (and 

therefore number of quantiles). NSE values range from -∞ to a maximum of 1, which would 

indicate that the estimated values matched observed exactly. Because both NSE and percent 

bias will be heavily influenced by the highest flows, values are given for the entire FDC as well 

as broken down into values above and below the median streamflow. This is a particular issue 15 

when assessing the GOF of daily streamflows because they span 5 or more orders of magnitude 

and, therefore, exhibit such enormous values of skewness as documented by Vogel and 

Fennessey (1993).  

 Figure 5 gives boxplots summarizing the NSE for POR-FDCs and MA-FDCs fit with 

GPA3 (left plot) and those fit with KAP (right plot). Recall that the method of L-moments 20 

(Hosking and Wallis, 1997) was used to estimate parameters of the KAP and GPA3 probability 

distributions corresponding to the POR- and MA-FDCs. The range of NSE coefficients from 

the whole POR-FDC is given in white, followed by flows above the median in light grey and 

then flows below the median flow in dark grey. To enable comparisons, the plots all range from 
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0-1 and some negative values of NSE are not shown (but the number omitted is listed in the 

figure caption). First, comparing the right plot to the left plot, we conclude that the four-

parameter KAP distribution generally performs better than the 3-parameter GPA3 distribution. 

Next, comparing POR-FDC to MA-FDC NSE coefficients, NSE is much higher for MA-FDC 

both overall and for flows above the median. The median NSE for flows below the median is 5 

similar for both POR-FDC to MA-FDC, however MA-FDC has a slightly lower 25th percentile.   

As a measure of standardized mean square error, the NSE is made up of both the effects of 

bias and variance. To separate these two effects, we also examine bias separately. We compute 

percent bias to account for differences in the magnitudes of the flows across sites: 

%	𝐵𝑖𝑎𝑠 = 100 ∗	
W
U (U

TVW ST
XYZ[KST)

W
U STU

TVW
      (6) 10 

In Fig. 6, boxplots illustrate that %bias is very close to zero for both POR-FDC and MA-FDC 

across the entire FDC as well as above and below the median. We find some slightly larger 

%bias for flows below the median but the 25th and 75th percentiles of %bias remains within +/- 

10%. 

As found in other studies, fitted KAP and GPA3 probability distributions generate 15 

negative flows and/or exhibit theoretical upper or lower bounds inconsistent with observed 

flows at some sites (Archfield, 2009; Castellarin et al., 2007). Table B1 (Appendix B) provides 

counts of these inconsistencies for both MA-FDCs and POR-FDCs and illustrates that these 

inconsistencies are problematic for both FDCs as well as both GPA3 and KAP probability 

distributions. In general, the fitted KAP probability distribution had more problems with lower 20 

bounds while the GPA probability distribution was less able to accurately reflect the highest 

flows. Parameter estimates derived to reproduce the expected value of the minimum observed 

streamflow can be used to ensure a non-negative lower bound of flows for GPA3 (Fennessey, 

1994), but are difficult to derive for the KAP probability distribution (Archfield, 2009). Both 

Castellarin et al. (2007) and Archfield (2009) tried to enforce a lower bound of zero for the 25 
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KAP probability distribution, however, Archfield found these methods did not improve the 

overall fit of the resulting probability distributions. More research is needed on how to obtain 

parameter estimates for the KAP and GPA3 probability distributions that generate lower and 

upper bounds consistent with the properties of daily streamflow observations (i.e. streamflow 

cannot be negative; the upper bound is infinite). 5 

3.3 Graphical Evaluation of flow duration curves  

Part of the reason why FDCs are so widely used in practice is that they provide a 

graphical illustration of the complete relationship between the magnitude and frequency of 

streamflow as was illustrated in Fig. 1. Such FDC plots also enable a very effective visual 

comparison of the relative GOF of the GPA3 and KAP distributions for POR- and MA-FDCs 10 

as is shown in Fig. 7 and Fig. 8. Visual comparisons provide an opportunity to assess which 

portions of the FDC the fitted probability distributions are best able to approximate streamflows 

and also provide a visual assessment of NSE and %bias values. To illustrate overall GOF, Fig. 

7 and Fig. 8 focus on three sites representing the lowest (worst fit), median (typical fit), and 

highest (best fit) based on values of NSE for the GPA3 probability distribution across all sites 15 

in the study.  

Starting on the right, both KAP and GPA3 provide an excellent fit to the “best” POR-

FDC and MA-FDC plots, as illustrated in Fig. 7 and Fig. 8, respectively. The site with the 

median NSE for both POR- and MA-FDCs is the same and this site indicates a comparable fit 

across the two FDCs. Despite this comparable fit, the NSE coefficients are quite different: 0.89 20 

for POR-FDC GPA3 versus the much higher 0.96 for MA-FDC GPA3. This discrepancy 

reflects a challenge in the use of the metric and indicates why visual inspection of FDC plots 

is particularly important for understanding overall GOF. Looking to the plots of sites with the 

lowest NSE, the POR-FDC is not well fit by the GPA3 and even the KAP led to both over-

estimation of the upper tail and under-estimation of the lower tail. The site with the lowest NSE 25 
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for the MA-FDC was one in which KAP parameters could not be estimated because they were 

inconsistent with the L-moment ratios at that site. The GPA3 distribution, while 

underestimating the highest flows, nevertheless provides a relatively good fit to the rest of the 

MA-FDC even for this worst case.  We conclude from these evaluations that both the GPA3 

and KAP probability distributions provide good models for representing MA-FDCs across the 5 

entire U.S., whereas, neither model is able to adequately reproduce observed POR-FDCs for 

many of the sites considered.  This conclusion could only have been reached by a careful 

assessment of both quantitative and graphical GOF evaluations; using NSE and L-moment 

diagrams alone would have masked these observations.  

 10 
4. Regional case studies 

Now that we have documented the improved GOF of theoretical probability 

distributions to MA-FDCs compared with POR-FDCs, it is of interest to explore whether this 

result can lead to improvements in our ability to estimate FDCs at ungaged sites. Castellarin et 

al. (2013) compare a number of methods of estimating FDCs at ungaged sites and note that 15 

statistical methods are most common. Regression models for a region with gaged streams can 

be used to develop models to predict parameters of a probability distribution based on basin 

characteristics. If the basin characteristics of an ungaged site are known, the regional regression 

models can be used to estimate the parameters of the probability distribution and simulate a 

FDC. Here we illustrate how our findings can be applied to the prediction of FDCs at ungaged 20 

sites using the mid-Atlantic and the Missouri Hydrologic Units (HUCs# 02 and 10 respectively; 

Fig. 2) as case studies. These regions were selected for having a sufficient number of 

unregulated sites to enable estimation of regional relationships between probability distribution 

model parameters and watershed characteristics. In addition, both regions exhibit a significant 

hydrologic heterogeneity, creating a challenge for estimation of FDCs at ungaged sites. The 25 

GPA3 distribution was selected for regionalization because it is a parsimonious model with 
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three parameters that each has a clear physical interpretation: 𝜉 represents the theoretical lower 

bound, 𝛼 the scale, and 𝜅 the shape.  

Leave-one-out cross validation, which effectively treats each stream gage as though it 

were ungaged, is used to evaluate the regionalization method. Within each of the two regions, 

each site was omitted from the data set iteratively and regional regression equations were 5 

developed and then applied to the removed stream gage. Power-law regression models for each 

of the three GPA3 model parameters for POR- and MA-FDCs were developed, resulting in six 

regression models per region (three models for the POR-FDC and three models for the MA-

FDC). These models are based on those used by Fennessey (1994) and include comparable 

basin characteristics now available in the GAGESII dataset (Falcone, 2011). The following 10 

regional regression models for the three parameters (𝜉, 𝛼, and 𝜅) were fit using ordinary least 

squares by taking natural log of each equation: 

𝜉 + 1 = βnDAqW𝑃q\𝐵𝐹𝐼qt𝐴𝑊qw    (7) 

𝛼 = β6DAqx𝑃qy𝐵𝐹𝐼qz	𝑃𝐸𝑇q|𝑇𝑂𝑃qW~    (8) 

𝜅 + 1 = β99DAqW\𝑃qWt𝑊𝐷qWw     (9) 15 

where 𝜉, 𝛼, and 𝜅 are the predicted values for the three parameters of the GPA3 probability 

distribution and the βs are the estimated coefficients of each model. The explanatory variables 

are as follows: DA is drainage area, P is the long-term annual average precipitation for the 

basin, BFI is the long-term average base flow index, AW is average available water capacity 

for soil layer, PET is mean annual potential evapotranspiration estimated using the Hamon 20 

equation (Hamon, 1961), TOP is the topographic wetness index and WD is wet days, or the 

average annual number of days of measurable precipitation (Falcone, 2011). Appendix C 

provides more detailed descriptions of these variables and estimated coefficients for the 

regression models for both POR- and MA-FDCs for HUCs 02 and 10. Adjusted R2 values for 

the 12 models range from 19% to 98% (Appendix C, Table C2). Regression assumptions of 25 
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normality and homoscedasticity were assessed through diagnostic checks of regression 

residuals. All model residuals appeared to be approximately homoscedastic based upon plots 

of residuals. Based on the Shapiro-Wilks test, the null hypothesis that the residuals are normally 

distributed could not be rejected at the 5% level for almost all models (Appendix C, Table C3). 

Detailed regression results are not given here as these case studies are only intended to illustrate 5 

how our results can be applied but are not the primary focus of this study. 

 Figure 9 contrasts the GOF of the regional regression approach with results from a 

corresponding at-site analysis based on the observed data at each site, which was obtained 

using the results from Sect. 3.1. Here the regional regression is used to fit a GPA3 model to the 

observations at each site, and the NSE of all flows (including flows both above and below the 10 

median) is used to compare the GOF of flows estimated by fitting a GPA3 to the at-site 

observations using L-moments.  Boxplots of NSE values for at-site results are compared to 

regional regression models for POR- and MA-FDCs in Fig. 9. Both at site and regional models 

are able to predict flows within HUC 02 (left) much more consistently compared to HUC 10 

(right). This is consistent with other studies which have found GOF higher in the mid-Atlantic 15 

region compared to the Missouri region (Newman et al., 2015; Martinez and Gupta, 2010). 

Overall, NSE values are generally higher for MA-FDCs compared to POR-FDCs in both 

regions. We conclude from this analysis that regionalization of MA-FDCs should in general 

lead to more accurate predictions of FDCs than regionalization of POR-FDCs.  

5 Conclusions 20 

Combining quantitative goodness-of-fit comparisons in addition to graphical 

assessment based on L-moment diagrams and visual assessment of graphical FDC plots, we 

conducted an extensive search for a single probability distribution function that could fit all 

daily streamflows at over 400 perennial, unregulated stream gage sites in the conterminous 

United States.  We find that both the four-parameter Kappa (KAP) and the three-parameter 25 
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generalized Pareto (GPA3) distributions provide very good approximations to median annual 

flow duration curves (MA-FDCs), however neither distribution provides nearly as suitable a 

fit to the much more complex and complete distribution of daily streamflows, the period of 

record flow duration curve (POR-FDC). It seems unlikely that a single theoretical 3-, 4, or 5-

parameter distribution will be able to capture the extraordinary complexity and variability 5 

associated with the full range of daily flows exhibited in POR-FDCs. Some caveats with the 

use of POR-FDCs include that these FDCs can only be considered to yield steady state 

exceedance probabilities given a sufficiently long period of record; if the period of record is 

either much shorter than the planning period or includes abnormally dry or wet periods, the 

interpretation of POR-FDCs as a steady-state representation of streamflow may be misleading. 10 

In general, the interpretation of a POR-FDC is limited to the exact period of record used in its 

construction. Thus, for certain water resource applications such as prediction of typical 

hydropower production in a year or managing flows for ecological services, prediction of a 

MA-FDC might be more useful than POR-FDC. Few previous studies have sought to evaluate 

theoretical probability distributions for modelling MA-FDCs which represent streamflow 15 

magnitude and frequency during a typical year.  However, the many uses of MA-FDCs suggest 

that our findings could have broad applications. We caution users of MA-FDCs to be aware 

that they can only provide a window into the behaviour of streamflow in a typical year, thus 

they should not be used when severe floods and droughts are of interest.   

Others have noted the need for models with at least four-parameters to describe the 20 

complex distribution of daily streamflows. We find that even a four parameter probability 

distribution is insufficient to suitably describe POR-FDCs at unregulated perennial streams in 

the US. Both at-site and regional parameter estimation methods will be subject to even greater 

challenges in estimation and interpretation of parameters as one considers more complex 

probability distributions. We have identified challenges in accurately reproducing the 25 

behaviour of minimum observed streamflow due to problems relating to parameter estimation 
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and the challenge of enforcing the conditions that observed streamflows must be both non-

negative and always exceed theoretical distributional lower bounds.   

Finally, we performed a small case study to evaluate our ability to develop a regional 

model of POR- and MA-FDCs for two regions in the US using a 3-parameter probability 

distribution.  Such models are quite useful for estimation of FDCs as well as time series of 5 

streamflows at ungaged sites.  Based on leave-one-out cross validation experiments, we find 

that regional hydrologic models of the parameters of a GPA3 distribution can predict MA-

FDCs at ungaged sites quite accurately. However, the prediction of POR-FDCs was less 

consistent. For applications of FDCs for which interpretation of the magnitude-frequency 

relationship in a typical year suffices, prediction of a MA-FDC may provide a more accurate 10 

estimate of daily streamflows than attempts to describe the steady-state magnitude-frequency 

relationship using the POR-FDC.  

Daily streamflow varies over four or five orders of magnitude and is subject to 

seasonality and serial correlation; when viewed though this lens, the finding of any candidate 

distribution - such as those explored here - that provides some explanatory power is remarkable. 15 

The case study provides evidence that there is potential for use of a single pdf of daily 

streamflow for some applications. Continued work to assess the feasible upper and lower 

bounds could bring us closer to understanding the behaviour of FDCs.   

 

Appendix A. L-moment ratio diagrams for index flow method of constructing regional 20 

FDCs 

As this study is closely related to the index-flow method of developing regional models 

of POR-FDCs and AFDCS (Castellarin et al., 2004) and to the theoretical approach introduced 

by Serinaldi (2011) to construct confidence intervals for AFDCs, we explore here the problem 

of fitting a probability distribution to index flow FDCs. The index-flow method introduced by 25 

Castellarin et al. (2004) requires splitting the daily streamflows into two components:  (1) the 
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series of annual flows (AF) and (2) the daily flows divided by the annual flow in each 

corresponding year which we term the index flows. Figure A1 illustrates L-moment diagrams 

for these two components.  L-Cv vs L-skew diagrams are useful for identifying 2-parameter 

distributions; a plot comparing these L-moment ratios for the series of AFs is given in the left 

panel of Fig. A1. The left plot suggests that the probability distribution of AFs in the US can 5 

be approximated by the 2-parameter Gamma distribution, a result which is consistent with other 

recent national (Vogel and Wilson, 1996) and global studies (McMahon et al., 2007).  The right 

plot in Fig. A1 shows L-kurtosis vs L-skew ratios for the index flows which are simply the 

daily flows standardized by each year’s annual flow (POR-FDC/AF, represented by empty 

circles) compared to the POR-FDC (solid grey points). This plot indicates that the distribution 10 

of the standardized daily flows is of comparable complexity to that of the unstandardized POR-

FDC.  We conclude that the theoretical framework introduced by Castellarin et al. (2004) and 

Serinaldi (2011) while extremely promising, will pose tremendous challenges in terms of 

finding a suitable probability distribution to model the distribution of index flows in 

combination with the AFs. 15 

 

Appendix B. Probability distribution function parameter estimation challenges 
Table B1. For fitted generalized Pareto (GPA3) and Kappa (KAP) distributions, counts and percentage of sites with 
negative predictions or theoretical bounds inconsistent with observed period of record flow duration curves (POR-

FDC) and median annual flow duration curves (MA-FDC) compared to total sites with feasible parameters for each 20 
distribution 

  GPA3 KAP 
Sites with: POR-FDC MA-FDC POR-FDC MA-FDC 

Negative flows predicted 
102/420 
 (24%) 

88/420 
(21%) 

47/384 
(12%) 

13/400 
(3%) 

Observed flows>upper 
bound 

4/10 
(40%) 

4/15 
(27%) 

7/24 
(29%) 

6/75 
(8%) 

Observed flows<lower 
bound 

265/420 
(63%) 

147/420 
(35%) 

287/383 
(75%) 

243/400 
(61%) 

Theoretical lower bound <0 
102/420 
(24%) 

92/420 
(22%) 

58/384 
(15%) 

26/400 
(7%) 
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Appendix C. Regional regression variables and summary 
Table C1. Description of explanatory variables for regional regression equations. These are all taken from GAGESII 

database, except for the drainage area of the basin (Falcone, 2011)  

Variable Description 
DA_km2 Drainage area in (km2)  

PPTAVG_BASIN Mean annual precipitation (cm) for the watershed, from 800m PRISM data.  30 
years period of record 1971-2000.  

BFI_AVE Base Flow Index (BFI), The BFI is a ratio of base flow to total streamflow, 
expressed as a percentage and ranging from 0 to 100. Base flow is the sustained, 
slowly varying component of streamflow, usually attributed to ground-water 
discharge to a stream.  

PET Mean-annual potential evapotranspiration (mm/year), estimated using the Hamon 
(1961) equation  

TOPWET Topographic wetness index, log(a/S); where "log" is the natural log, "a" is the 
upslope area per unit contour length and "S" is the slope at that point 

WD_SITE Site average of annual number of days (days) of measurable precipitation, derived 
from 30 years of record (1961-1990), 2km PRISM.  

AW_CAVE Average value for the range of available water capacity for the soil layer or horizon 
(cm of water per inches of soil depth) 

 
Table C2. Adjusted R2 (top) and p-values for Shapiro-Wilk test of normality of residuals (in parentheses below) for 5 

models predicting generalized Pareto parameters for HUCs 2 and 10 for POR- and MA-FDC 
  HUC 2 HUC 10 
 POR-FDC MA-FDC POR-FDC MA-FDC 

Xi 
19%  

(.005) 
36% 

(.835) 
49% 

(.502) 
48% 

(.576) 

a 
98% 

(.028) 
97% 

(.103) 
91% 

(.593) 
88% 

(.593) 

k 
42% 

(.602) 
38% 

(.391) 
35% 

(.080) 
40% 

(.294) 
 

 Regional regression results are given in tables C3-C6. These tables were produced with 

the help of the R package StarGazer (Hlavac, 2015). 

 10 
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Table C3. Regional regression results for HUC 2 POR-FDC 
POR-FDC Regional Regression Results 
======================================================================================== 
                          log(xi+1)               log(alpha)               log(k+1)      
---------------------------------------------------------------------------------------- 5 
log(DA_km2)                 0.104                  1.039                                 
                        t = 2.873***           t = 41.058***                             
log(PPTAVG_BASIN)           0.643                  2.338                  0.501          
                          t = 1.385            t = 6.369***            t = 2.540**       
log(WD_SITE)                                                              0.452          10 
                                                                       t = 3.187***      
log(BFI_AVE)                0.548                  0.204                  0.562          
                         t = 1.861*              t = 0.725             t = 4.401***      
log(AWCAVEcm)               0.399                                                        
                          t = 1.424                                                      15 
log(PET)                                          -2.672                                 
                                               t = -8.132***                             
log(TOPWET)                                        1.572                                 
                                               t = 3.913***                              
Constant                   -5.008                 -3.277                  -7.106         20 
                        t = -2.091**            t = -1.321            t = -6.164***      
---------------------------------------------------------------------------------------- 
Observations                 57                     57                      57           
R2                          0.244                  0.979                  0.450          
Adjusted R2                 0.186                  0.977                  0.419          25 
Residual Std. Error    0.271 (df = 52)        0.188 (df = 51)        0.117 (df = 53)     
F Statistic         4.198*** (df = 4; 52) 466.896*** (df = 5; 51) 14.436*** (df = 3; 53) 
======================================================================================== 
Note:                                                        *p<0.1; **p<0.05; ***p<0.01 

 30 
Table C4. Regional regression results for HUC 2 MA-FDC 
MA-FDC Regional Regression Results 
======================================================================================== 
                          log(xi+1)               log(alpha)               log(k+1)      
---------------------------------------------------------------------------------------- 35 
log(DA_km2)                 0.156                  1.036                                 
                        t = 5.155***           t = 37.474***                             
log(PPTAVG_BASIN)           0.660                  2.592                  0.479          
                         t = 1.705*            t = 6.459***            t = 2.200**       
log(WD_SITE)                                                              0.285          40 
                                                                        t = 1.821*       
log(BFI_AVE)                0.612                  0.031                  0.597          
                         t = 2.492**             t = 0.100             t = 4.228***      
log(AWCAVEcm)               0.290                                                        
                          t = 1.237                                                      45 
log(PET)                                          -2.606                                 
                                               t = -7.258***                             
log(TOPWET)                                        1.647                                 
                                               t = 3.751***                              
Constant                   -5.699                 -4.449                  -6.305         50 
                        t = -2.852***           t = -1.641            t = -4.948***      
---------------------------------------------------------------------------------------- 
Observations                 57                     57                      57           
R2                          0.408                  0.975                  0.410          
Adjusted R2                 0.362                  0.972                  0.377          55 
Residual Std. Error    0.226 (df = 52)        0.206 (df = 51)        0.129 (df = 53)     
F Statistic         8.954*** (df = 4; 52) 394.099*** (df = 5; 51) 12.297*** (df = 3; 53) 
======================================================================================== 
Note:                                                        *p<0.1; **p<0.05; ***p<0.01 

 60 
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Table C5. Regional regression results for HUC 10 POR-FDC 
POR-FDC Regional Regression Results 5 
====================================================================================== 
                          log(xi+1)              log(alpha)               log(k+1)     
-------------------------------------------------------------------------------------- 
log(DA_km2)                 0.445                 1.171                                
                        t = 4.367***          t = 13.398***                            10 
log(PPTAVG_BASIN)           1.300                 2.168                 -0.028         
                          t = 1.646            t = 4.235***           t = -0.076       
log(WD_SITE)                                                            -0.590         
                                                                      t = -1.632       
log(BFI_AVE)                1.620                 -0.438                 0.894         15 
                         t = 2.508**            t = -0.758           t = 3.322***      
log(AWCAVEcm)               0.691                                                      
                          t = 1.157                                                    
log(PET)                                          -1.247                               
                                                t = -1.560                             20 
log(TOPWET)                                       -3.548                               
                                                t = -1.693                             
Constant                   -13.596                1.611                 -1.654         
                        t = -2.688**            t = 0.241             t = -0.787       
-------------------------------------------------------------------------------------- 25 
Observations                 27                     27                    27           
R2                          0.569                 0.926                  0.428         
Adjusted R2                 0.491                 0.908                  0.353         
Residual Std. Error    0.639 (df = 22)       0.464 (df = 21)        0.354 (df = 23)    
F Statistic         7.259*** (df = 4; 22) 52.455*** (df = 5; 21) 5.736*** (df = 3; 23) 30 
====================================================================================== 
Note:                                                      *p<0.1; **p<0.05; ***p<0.01 

 
Table C6. Regional regression results for HUC 10 MA-FDC 
MA-FDC Regional Regression Results 35 
====================================================================================== 
                          log(xi+1)              log(alpha)               log(k+1)     
-------------------------------------------------------------------------------------- 
log(DA_km2)                 0.458                 1.190                                
                        t = 4.403***          t = 11.352***                            40 
log(PPTAVG_BASIN)           1.370                 2.188                 -0.193         
                          t = 1.699            t = 3.562***           t = -0.557       
log(WD_SITE)                                                            -0.586         
                                                                      t = -1.734*      
log(BFI_AVE)                1.614                 -0.673                 0.807         45 
                         t = 2.446**            t = -0.970           t = 3.212***      
log(AWCAVEcm)               0.787                                                      
                          t = 1.291                                                    
log(PET)                                          -1.572                               
                                                t = -1.641                             50 
log(TOPWET)                                       -3.842                               
                                                t = -1.529                             
Constant                   -13.796                4.972                 -0.555         
                        t = -2.672**            t = 0.620             t = -0.283       
-------------------------------------------------------------------------------------- 55 
Observations                 27                     27                    27           
R2                          0.562                 0.901                  0.464         
Adjusted R2                 0.482                 0.877                  0.395         
Residual Std. Error    0.653 (df = 22)       0.557 (df = 21)        0.331 (df = 23)    
F Statistic         7.057*** (df = 4; 22) 38.135*** (df = 5; 21) 6.650*** (df = 3; 23) 60 
====================================================================================== 
Note:                                                      *p<0.1; **p<0.05; ***p<0.01 
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Figure 1. Examples of period of record, median annual, and annual flow-duration curves for the Choptank River 

near Greensboro, Maryland, USA. 
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Figure 2. Map of the conterminous United States with locations of the 420 stations shown in black and the two regions 
of regionalization shown in grey (HUC #10, Missouri region and HUC #02, the mid-Atlantic region.) Boxplots of the 

number of years of record length and the range of drainage areas are given in the lower left corner of the figure. 
 5 

 
Figure 3. L-Kurtosis ratios compared to L-skew ratios for POR-FDC (A) and MA-FDC (B) at 420 US sites as 

compared to the theoretical relations between L-Kurtosis and L-skew ratios for candidate probability distributions. 
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Figure 4. L-Kurtosis ratios compared to L-skew ratios for POR-FDC simulated from sample L-moments estimates at 
420 US sites using the 3-parameter generalized Pareto (A), the 4-parameter Kappa (B) and the 5-parameter Wakeby 

(C) distributions as compared to the theoretical relations between L-Kurtosis and L-skew ratios for candidate 
probability distributions. 5 

 

 
Figure 5. Boxplots illustrating the range of Nash-Sutcliffe efficiency (NSE) values of period of record (POR-FDC) and 
median annual flow duration curves (MA-FDC) fit with the 3-parameter generalized Pareto distribution (A) and the 
4-parameter Kappa distribution (B). Uneven sample sizes are due to sites for which Kappa parameters could not be 10 
estimated. To enable visual comparison, outliers below zero have been omitted. The number of negative NSE values 

outliers is (from left to right): 34,41,34,0,0,44, 0,0,1,0,0,1, respectively. 
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Figure 6. Boxplots illustrating the range of bias, in percent, of period of record (POR-FDC) and median annual flow 
duration curves (MA-FDC) fit with the 3-parameter generalized Pareto (A) distribution and the 4-parameter Kappa 

distribution (B). 
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Figure 7. Empirical period of record (POR) flow duration curves (FDCs) and models of FDCs with the 4-parameter 
Kappa distribution and the 3-parameter Generalized Pareto distribution for sites with the lowest (A), median (B), 

and highest (C) Nash Sutcliffe efficiency (NSE). 
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Figure 8. Median annual flow duration curves (MA-FDCs) and models of FDCs with the 4-parameter Kappa 

distribution and the 3-parameter Generalized Pareto distribution for sites with the lowest (A), median (B), and 
highest (C) Nash Sutcliffe efficiency (NSE). 5 

 

 
Figure 9. Comparison of Nash-Sutcliffe efficiency (NSE) values for HUC 02 and HUC 10 regional models of POR-
FDC and MA-FDC using leave-one-out cross validation.  Boxplot comparisons of regional and at site models are 
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illustrated for MA-FDCs (white) and POR-FDCs (grey) for the HUC 02 (A) and HUC 10 (B) regions. To enable visual 
comparison, NSE coefficients below zero have been omitted. [For HUC 02, the number of outliers for the boxes left to 

right is 2,1,0,0; for HUC 10 left to right is 6,10,0.] 
 
 5 
 

 
Figure A1. Sample L-coefficient of variation (L-CV) ratios compared to sample L-skewness ratios for annual flows 

(A) and sample L-Kurtosis ratios compared to sample L-skewness ratios for  POR-FDC standardized by annual flows 
(B) at 420 US sites. The theoretical relations between L-CV and L-skewness are shown for candidate two-10 

parameter distributions in panel A; the theoretical relations between L-kurtosis and L-skewness are shown for 
candidate three-, four- and five-parameter distributions in panel B. 
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